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PREFACE

This Memorandum continues Project RAND's program of
research in graph theory and other aspects of combinatorics.
In particular, various known theorems about finite bipartite
and directed graphs are generalized to infinite bipartite
and directed graphs.

Graph theory not only finds application to transporta-
tion networks and to similar operations research problems,
but constitutes a general theory of relations on finite

or infinite sets.
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SUMMARY

The main theorem of this Memorandum provides necessary
and sufficient conditions in order that a locally finite
bipartite graph have a subgraph whose valences lie in pre-
scribed intervals. This theorem is applied to the study
of integer-valued flows in locally finite directed graphs.
In particular, generalizations of the max-flow min-cut
theorem and of the circulation theorem are obtained.

The axiom of choice is assumed throughout.
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SUBGRAPHS OF BIPARTITE AND DIRECTED GRAPHS

1. INTRODUCTION

Our object in this paper is to generalize certain

known theorems about finite bipartite and directed graphs
to infinite (usually locally finite) bipartite and directed
graphs. In the development that follows, we have chosen as
our main theorem (Theorem 1) one that gives necessary and
sufficient conditions for the existence of a valence-
constrained subgraph H of a bipartite graph G. Specifically,
let G be a bipartite graph having vertex parts I, J and
suppose that for each vertex i ¢ I wec are given a pair of
nonnegative integers [a,, a;] satisfying a, < aj, and that
for each vertex j ¢ J we are given a pair of nonnegative
integers [bj' bj] satisfying bj'g bj. We also suppose that
if a, > 0, then G has finite valence at i; similarly, 1f

bj > 0, we suppose that G has finite valence at j. Under
these assumptions, we obtain necessary and sufficient con-
ditions in order that G have a subgraph H whose valence

at 1 ¢ I lies in the interval [‘i’ ai] and whose valence

at j ¢ J lies in the interval [b b'j]. I1f G is finite,

’
existence conditions for such anJH are known [3, 4]. 1In
Sec. 2 we show that these conditions extend to the infinite
case, Our proof invokes the Tychonoff theorem explicitly,
and hence the axiom of choice implicitly.

There are a number of theorems that can be viewed as
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special cases of Theorem 1. Among these are the Schrider-
Bernstein theorem (or, equivalently, the Banach mapping
theorem [1]), the Hall theorem on systems of distinct
representatives [5, 6], a generalization of the Schrider-
Bernstein theorem due to Perfect and Pym [10], and a receat
generalization by Mirsky (9] of a theorem of Ford and
Fulkerson [2] concerning systems of representatives with
repetition. We shall discuss these briefly in Sec. 3.

The remainder of the paper deals with applications of
Theorem 1 to flows in directed graphs. In particular, the
sax-flow min-cut theorem of Ford and Fulkerson [3] and the
circulation theorem due to Hoffman (3, 8] are generalized
to locally finite directed graphs via Theorem 1.
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2., THE MAIN THEOREM

By a natural number we mean a nonnegative integer.

By an extended natural number we mean a natural number or
o, We extend the ordering of the natural numbers to the
extended natural numbers by defining n < ® to be true for
every natural number n. We extend the operation of addi-
tion to the extended natural numbers by defining « + » = »
and » + n = n + » = » for every natural number n,

If S is a finite set and X; is an extended natural
number for each i ¢ S, then iES x; is a well-defined
extended natural number., If S is a (possibly infinite)
set and Xq is an extended natural number for each i ¢ S,
let *t = {1 ¢ Slxi >0}. 1If st 1s infinite, set T X ==

+ ieS
If S is finite, set = Xy = I + X4

ieS iceS
Let I and J be sets. For each 1 ¢ I let a, be a
natural number and a; an extended natural number with
a; <aj. For each j ¢ J let b_1 be a natural number and
bj' be an extended natural number with by < bj. For each
ie¢eI, JeJ, let °1j be a natural number. Suppose the

following '"weak local finiteness" condition is satisfied:

(W.L.F.) For each {1 ¢ I either a = Oor 4y = 0 for
all but finitely many j ¢ J. For each j ¢ J either b.1 = 0
or ¢y = 0 for all but finitely many { ¢ I.

Consider the following conditions which may or may
not be satisfied by the numbers a, bj, cu:

(Ia) For each finite NC I, I a, < T min (bl, I c.¢).
= geN 1= je3 3" qen 13




b

(Ib) For each finite M cJ, ~ < T min (‘1’ T oey ).
jeM j iel jeM J

(Ila) There is a family x = {xijliel,ij of natural numbers
such that

(1Iai) for each i ¢ I, j ¢ J, Xgq S C4q0
(11aii) for each i ¢ I, a < T xij’ and

jeJ

(11aiii) for each j ¢ J,
- y 1cI ij j

(IIb) There is a family x = [xijliel,ij of natural numbers
such that

(IIbi) for each 1 ¢ I, J ¢ J, xij 5-°ij’

(1Ibii) for each j ¢ J, b.1 < 151 xij’ and

(IIbiii) for each i ¢ I, T xij -"1'
jad

(II1) There is a family x = {xij}iel,ij of natural numbers
such that

(II1Ii) for each i ¢ I, J ¢ J, x,, <¢c,.,
i) = 1]

(11141) for each i ¢ I, a; < jEJ IR aj, and

(I11141) for each j ¢ J, bj < 15 < bj

THEOREM 1. _Assume that condition (W.L.F.) holds. Then

(1) Condition (IIa) holds if and only if condition
(Ia) holds.

(11) Condition (IIb) holds if and only if condition
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(Ib) holds.

(111) Condition III holds if and only if conditions
(Ia) and (Ib) both hold.

(iv) Condition III holds if and only if conditions
(I1a) and (IIb) both hold.

PROOF., IIa = la, Let x = {xijliel,je.l be a family of
natural numbers satisfying IIa. Let N be a finite subset of I.

For each j ¢ J, T x,, < I x,. <b! by (Ilaiii). For
beds TS gty sty

each 1 e NCc I, x,, <c,, by (IIai). Hence € T @aas
» 13 =1 ™ ) ! ieN 13 = fen 1

2 b! T . B

Hence, for each j ¢ J, xij < min ( 3 Iy cu) y

(Ilail), 8 < jz X43 for each 1 ¢ I. Therefore,
ieN 13 i.cN jeJ ij ij 1eN 1-1 s jEJ min (b E cij)

By a similar argument, interchanging the roles of I
and J, IIb = Tb,

I11 » IIa and IIb, Let x = [xij }1c1,jeJ be a family of
natural numbers satisfying III. Then x also satisfies Ila
and IIb,

Ia and Ib = III, For 1 ¢ I, j ¢ J, let xij be the set
of integers n with 0 < n < c“. With the discrete topology,
"1,1 is a compact Hausdorf space. Hence, by Tychonoff's
theorem, X = ] xu is a compact Hausdorf space.

iel
jed

For each 1 ¢ I, let Py be the set of x ¢ X such that
a < ':"J x4y < ai. For each j ¢ J, let Qj be the set of

x ¢ X such that by < 1>c:I gy < bj.
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Lemma. For each i ¢ I and each j ¢ J, Py and QJ are

closed subsets of X.

Proof. Let x ¢ X with x ¢ Py. There are two possi-
bilities:

(1) jEJ x:L1 < a, or

Suppose the first possibility holds. Then a, > 0, and so
by condition (W.L.F.) the set M = {j ¢ chij > 0} 1is
finite. Let U= (y ¢ xlyij = Xy for j ¢ M}. Then U is
an open subset of X and x ¢ U, Let y ¢ U. For j ¢ M,

y1j < gy = 0, and so sz Yiy ® jeM Yig = jEM X4 " jx X3

<a;. Hencey ¢ P, 50 U is an open subset of X containing
x which does not intersect P,.
Now suppose the second possibility holds. Then there

is a finite set N € J such that 7 xij > ' Let
Ve {ye¢ xlyij = x;y for j ¢ NJ. Then v is an open subset
of Xand x ¢ V. If y ¢ V then Z yij ch yij -

>a', soy ¢ P,. There ore, V does not intersect P,.
jeN ij i i i
We have now shown that every point x ¢ X which is
not in Pi is contained in an open set not intersecting Py.

Hence, P, is closed. Similarly, Qj is closed.

Now let N and M be finite sets with NC I and M C J.
Let Nt = {1 ¢ Nla, > 0} and MY = (§ ¢ MlbJ > 0}. Let
Re{1ic¢ Ilcij > 0 for some j ¢ M+}, and let
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*). since N* C N and

M= {3 cJIc:I_J > 0 for some i ¢
M+ C M are finite se.s, it follows from condition (W.L.F.) |
that N and M are finite.

For each 1 ¢ NUN, let a, = a, if i ¢ N and a; = 0 if
1ieN-N ForeachjeMUHNM letbh

3
FJ-OIfjeH-M.

=b, 1if j ¢ M and

3

Let N' <N U N. Then

T a, = T a, = a, < % min (b} % Cis)e
I A S A jeJ 3’ jenton 13
Now if j ¢ J - M, then ci.1 = 0 for each 1 ¢ N"', and so

' = ' =
min (b/, ieNEnN' cij) min (b, 0) = 0. Hence,

Y a; < T min (b! T c = 5 min (b}, b €.2)
gen' 1= gy " ety 1 jeN jenton' 1
< I min (!, T ¢;.).
= jeMUN gen' 1

Similarly, if M' € M U M, then
T b, < T min (a! T C..)e
jeM' 3 = 1eNUN 1 yemr 13
Hence, by [4, Theorem 1 or Theorem 5], there is a family

of natural numbers x = [xij}ieNUN, eMUN such that

(3) a4 < jefwﬁ Xgy S a; for eachi ¢ NUN,
(4) Sj < 1c§UN Xgy < bj for each j ¢ M U M, and
(5) xijgcijforeachieNUN,jeMUﬂ.

e e B




Define a family of natural numbers y = {yij}iel jeJ
»
by

(xij ifi e NUNand je MUMN,

yij-
lo if1 ¢ NUNor j ¢ MUN,

Let 1 eI, jeJ. 1If1 ¢NUNorj ¢ MUTW then
Yy -.Ogcij. If i e NUNand j ¢ MU M, then Yij = %4y < €44
by (5). Hence y ¢ X.

Now let 1 ¢ N, Then

T Y= I X

jeJ 13 jeMUM i3°

Hence, by (3),

a, =a, < % y,. <al.
i i-ij 1j - "1
Therefore, y ¢ P;. Similarly y ¢ Qj for each j ¢ M. Hence,

n Pi n n Qj is nonempty.
iV jCM

We have now shown that every finite subcollection of
the collection [Pi]ieI U {Qj]jeJ of closed subsets of X
has a nonempty intersection. Since X is compact it follows
that N P, N N O, is nonempty. Any element x in this
iel 1 jeJ J
intersection satisfies condition III,

We have now shown that Ia and Ib = III, that III = Ila
and IIb = Ia and Ib, so part (iii) of the theorem is

established.
la » 1Ia. Suppose condition Ia is satisfied. For
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each j ¢ J let 55 = 0. Then Sj s'bj. If MCJ is a finite

set, then = b, = 0< © min (a], = g ). Hence the
eM 3 : iel jeM \ J

numbers [ai)iel’ [ai}iel’ [lejeJ and (bj}jeJ satisfy con-

dition Ib as well as condition La. By part (iii) of the

theorem there is a family x = {xij}icl,jeJ of natural numbers

such that

< L Xy, < ai for each i ¢ I,

‘1-jeJ 1j =

J
5315 121 Xgy < bj for each j ¢ J, and

xij < cij for each 1 ¢ I, j ¢ J.

The family x satisfies condition IIa. By a similar argument,
Ib = IIb, This establishes parts (i) and (ii) of the theorem.
Part (iv) follows from parts (i), (ii), and (1ii).

In connection with Theorem 1, we note the following:

Remark 1, Suppose G = (1, J; E) is a bipartite graph
with vertex parts I, J and edg. set E S I x J. Let cij =1
or 0 according as (i,j) ¢ E or (1,j) ¢ E, and suppose that
G has the "vertex assigmment of intervals" [ai, ajl, 1 ¢1,
and [bj, bj], j €J. 1f G is locally finite at vertices

1 eI (jJ eJ) for which a, >0 (b, > 0), then Theorem 1

b
glves necessary and sufficient conditions in order that G
have a subgraph H whose valences lie in the prescribed

intervals,

Remark 2. The assumption in Theorem 1 that ci-1 is

a natural number, rather than an extended natural number,
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is not essential, since we may replace cij by Eij = max (ai, bj)

if cij > cij'

Remark 3. Theorem 1 remains valid if we replace
"natural number' by ''nonnegative real number' and "extended
natural number' by ''monnegative extended real number" and
define 1:'s X, = sup [1§N x,IN €8, N finite} for any family
{xi]ies of nonnegative extended real numbers. The only
change needed in the proof is in the proof that Ia and Ib = III.
In the real case we take xij = [0, cij] and argue as before
except for the proof of the lemma. The only change needed
in the proof of the lemma is to take

U= {yce¢ xlyij <%y +8 for ) e M

where 6 > 0 is a real number so small that 6|M| <a, - T «x ,
i jeJ 1)

and to take

Ve (ye xly1j >xgy - 8 for je N}

where 8 > 0 is a real number satisfying 6|N| < = xi_1 - ai.

jeN
Remark 4. Condition (Ia) is equivalent to
(Ia') For each finite N € I and each finite M € J,
gen 1= yom By en, ALY
jeJ-M
and similarly for (Ib).

Remark 5. The assumption (W.L.F.) is essential in
Theorem 1, as the following example (due to M. Hall [5])
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shows. Let I and J be the positive integers and define

l if either 1 = 1l or i =j + 1,
Ci =
J 0 otherwise.

Take a, = ai = 1 for all 1 ¢ I, and bj = 0, bj = 1 for all
j ¢J. Thus (W.L.F,) fails to hold for { = 1. Conditions
(Ia) and (Ib) hold, but (II1) fails.

Remark 6. Another proof of Theorem 1 can be given in
which the main tools are the finite case of the theorem
and the following "iufinity lemma,'" which is a consequence

of Zorn's lemma.

Infinity Lemma. Let S and X be sets. Let '"<" be a

partial ordering on S. Suppose th.t for any i, j € S there

is a k ¢ S with 1 <k and § < k. For each i ¢ S, let X; be

a finite nonempty subset of X. For each i, j ¢ S with

1>]3, let fij be a function from Xy Eg.xj. Suppose that

f11 (x) = x for each 1 ¢ S and each x ¢ Xy Finally,
suppose that if i, j, k ¢ S with 1 > j > k, then

fjk(fij(x)) = fik(x) for each x ¢ xi. Then there is a
function f from S to X such that f(i) ¢ x1 for each 1 ¢ S,
and if 1, j ¢ S with 1 > j, then fij(f(i))' £(3).

Use of the Tychonoff theorem instead of the above

lemma shortens the proof considerably, however.
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3. RELATED RESULTS

Theorem 1 includes a number of known results about
mappings, systems of distinct representatives, systems
of representatives with repetition, and so on., We discuss
some of these and begin with the Schréder-Bernstein theorem.
Let I and J be sets and let ¢ : I - J, ¥ : J -~ I be injec-
tive mappings. The Schroder-Bernstein theorem asserts
the existence of a bijection ¢ : I - J. Usual proofs of
the theorem assert more, namely that the bijection ¢ can
be viewed as a subgraph of the bipartite graph
G = (I, J; E; UE,), where E; = {(1, o(1))|1 ¢ 1}, E, =
((v(3),1)]3 € J}. 1In terms of Theorem 1, take cy = 1
for each edge of G, 4y = 0 otherwise, and let each vertex
of G have the interval assigmnment [.,1]. Note that (W.L.F.)
holds and that the hypothesis of the Schroder-Bernstein
theorem implies that (IIa) and (IIb) hold. Hence (III)
holds, yielding the bijection o : I -~ J.

Next let J be a set and let F = [Fi]ieI be a family
of finite subsets of J. The Hall theorem [5, 6] concerns
the existence of a system of distinct representatives for
the family F. In terms of Theorem 1, take cij =]1or0
according as j ¢ F; or j ¢ Fy, and take a; = aj = 1 for
each 1 ¢ I, bj =0, bj = 1 for each j ¢ J. Note that
(W.L.F.) is satisfied. The Hall theorem asserts that F
has a system of distinct representatives if and only if

the 'Hall condition" holds: For each finite subset N C I,
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the cardinality of N is less than or equal to the cardi-
nality of U Fi‘ In other words, (III) holds if and
only if (Ingholds. (Condition (Ib) holds automatically,
since bJ = 0 all j ¢ J.) A proof of the Hall theorem
that uses the Tychonoff theorem in the infinite case has
been given in [7].

A generalization of the Schrdder-Bernstein theorem
due to Perfect and Pym [10] runs as follows. Let I, J,
I', J' be sets with I' c I, J' € J, Let E be a subset of
I xJand let ¢ : I' = J, ¥ : J' - I be injective mappings
such that (i, ¢(1)) ¢ E for all 1 ¢ I'and (¥(j), J) ¢ E
for all j ¢ J'. Then there exist sets Iy Jo with I' ¢
Ipc L, J' cJycJ, and a bijection o : Iy = J, such that
(1, 0(1)) ¢ E for all i ¢ I (If I'=1and J' = J, this
reduces to the Schrdoder-Bernstein theorem.) To deduce
this result from Theorem 1, take a; = 0 or 1 according as
ieI-I"oriecl', and take aj = 1 for all 1 ¢ I.
Similarly, take bj = 0 or 1 according as j ¢ J - J' or
J e J', and tcke bj = 1 for all j ¢ J. Define ciy = 1 if
either j = ¢(i) or i = ¥(j), cyy = 0 otherwise. Thus
(W.L.F.) holds and (IIa) and (IIb) are satisfied by hypothe-
sis. Hence (III) holds, producing the desired sets Iy» Jo
and the bijection ¢ : Iy = Jo-

Mirsky [9] has recently generalized to the case of
infinite families of finite sets a theorem of Ford and

Fulkerson [2] for finite families concerning systems of




el

representatives with repetition allowed. The general
result may be described as follows. Let I and J be sets
and define a; = ai = 1 for each i ¢ I, but consider an
arbiérary assignment of intervals [bj’ bj] for j ¢ J.
Suppose Th 0 or 1 in such a way that (W.L.F.) holds,
i.e. for each 1 ¢ I, cij = 1 for only finitely many j ¢ J,
and if bj >0 for j ¢ J, then 4y = 1 for only finitely

many 1 ¢ I. For each finite set N € I, define

A(N) = {§ ¢ chij = 1 for some i ¢ NJ.
Similarly, for each finite set M € J, define

B(M) = {1 ¢ Ilcij = 1 for some j ¢ M}.
The theorem asserts that (III) holds if and only if:
(a) For each finite Nc I, |N| < ¢ bj;

= JeA(N)

(b) For each finite McJ, £ b, < |B(M)|.
jeM

3

(Here |S| denotes cardinality of a set S.) Since aj = 1

for all 1 ¢ I, it is apparent that (b) above is equivalent
to (Ib). It is also not hard to see that, since a, = 1

for all 1 ¢ I, condition (a) above is equivalent to (Ia).
Mirsky's proof of this theorem in the infinite case uses

two principal tools: the Hall condition and the generalized

form ¢f the Schroder-Bernstein theorem due to Perfect and

Pym,




4. FLOWS IN DIRECTED GRAPHS

Let V be a set and suppose that for each i ¢ V there
are integers d,, di satisfying d, < di. We also suppose
that for each (1, j) € V x V there are integers Lij’

Uy satisfying 0 < Lij S Yy with u;, = 0. Throughout
this section we make the following local finiteness

assumption:

(L.F.) For each 1 ¢ V, uij = 0 for all but finitely many
j eV, and “ji = 0 for all but finitely many j ¢ V.

We call a function £ from V x V to the natural

numbers a feasible flow if and only if

(6) d sz::vfij - j:'v £ <d), all L ¢V,
(7) tyy = f:l.j S Uyq all (i, j) ¢ V x V,

I1f we think of the directed graph G = (V; E), with
vertex set V and edge set E = {(i, J, ¢ V x Vlui'1 > 01,
then (L.F.) says that G is locally finite. The inequali-
ties (6) stipulate that the "net flow out of vertex i"
lies in the prescribed interval [di’ di], and (7) that
the "flow in edge (i, j)" lies in the prescribed interval
[Lij’ “1j]' If G is finite, necessary and sufficient
conditions for the existence of a feasible flow are known
(3, 8]. We can use Theorem 1 to extend these conditions

to the case of locally finite infinite directed graphs.




THEOREM 2. Assume that condition (L.F.) holds.

Then there is a feasible flow if and only if for each

finite X C V,

(8) T 2, < T d! T u
gex 13 = gex i+ fev-x 1J
Jev-X jeX
(9) 5 d N Ly < T Uy
gox 4T jevex WS gy 'Y
jeX jev=X

Proof. The translation g = £ - { shows that a
feasible flow f exists if and only if an integer-valued
g exists satisfying

(6') h, < ¢ - T <h!, alliecV
R e '

(7') 0 < 845 f'dij’ all (1, j) eV x V,

where

(10) hi di + 3 ¢

yev 31 ° jcV “y

() T jev 917 oy Uy

(12) dij =y - Lij‘

The existence of such a g is equivalent to the
existence of g and (an integer-valued) y defined on V x V

satisfying

(13) 84 + Yiy = dij’ all (4, jJ) eV x vV,
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14) ©* d,, -h] < © + v < ¢ d,, - h,,

( )jcV i) is_1cv 3 7 gy B3 = gy T
all i e V,

(15) gij~3 o, Yij >0, all (4, J) e V x V,

We can now apply Theorem 1 to the construints (13),
(14), (15). First note that (13), (14), and (15) are
equivalent to (13), (14'), and (15) where (14') is given
by
(14') max (O, 3Ev dij - hi)~5 j:V Yij + J:v 834 < j:v dij *

for all 1 ¢ V.,

In Theorem 1 take I = {(1, j) ¢ V x Vluij >0}, J =V,

with the interval assignments

(16) [dij’ dijl, (i, j) ¢ 1.

(17) [xax (O, jEV dij - hi), jgv dij - hil, i¢J,

and define the numbers €4k (14, §) ¢ I, k ¢ V by

«, if i=kor j =k

18 -
) cijk lO otherwise.

Note that (L.F.) implies that (W.L.F.) is satisfied for
(16), (17) and (18); indeed for fixed (i, j) ¢ I, cijk >
for at most two k ¢ V and for fixed k ¢ V, °1jk > 0 for

0

only finitely many pairs (1, j) ¢ I. Also note that for
ieVv,

e e U}

hy

Lo Too b |




S dyy ~h;, = ¥ u . - % ¢

; -d, - Tt + %
jev 13 1 4oy 13 gy 13

22
jev i jev 1]

= Y u,, -=d, - ¥ L,, >0
jev 13 i jeVv it -

by (9) with X = {i}. Hence, since hi > h,;, the lower bounds
of the intervals (17) never exceed the upper bounds.

The existence of the family x = [xijk}(i,j)el,keJ
satisfying (11I) is equivalent to the existence of g and y
satisfying (13), (14), (15), as one sees by putting

8jyp 1if k=13,
Xijk = ) Yige if k=14,
o, otherwise.

Theorem 2 now follows from Theorer. 1, part (iii).
The inequalities (9) are equivalent to those of (Ia) and
(8) to those of (Ib). We omit a detailed proof of these
assertions.

By taking d, = di = 0 in Theorem 2, necessary and suf-
ficient conditions are obtained for the existence of a
feasible conservative flow in locally finite directed graphs.

Theorem 2 can be used also to prove the max-flow min-
cut equality for locally finite directed graphs. Here we
distinguish two vertices of G = (V; E), say 8, t ¢ V. We
assume that each edge (i, j) ¢ E has an integer flow capacity
u1j > 0, and seek a maximum flow from s to t, i.e., subject

to the following constraints on integers fij’



v, i=3s
(19) T f,, - % f,.wml-v, 1=¢,

0, otherwise,
(20) 0 < fij < uij’ (ia j) € E,

we wish to maximize v, the amount of flow from s to t.
By adding the special 'return-flow edge' (t, s) to E, with
its associated interval [v, v], taking d; = d; = 0 all

i ¢ V, and taking {,, = 0 for edges of E other than the

i
special edge (t, s),jthe problem becomes that of seeking
the largest v for which there is a conservative feasible
flow in the resulting graph. Theorem 2 then implies

Theorem 3, below. To state Theorem 3 concisely, we make

the following definitions. A finite cut separating s and

t is a partition of V into two sets X, V - X, where s ¢ X,
teV-X, and one of X, V - X is a finite set. The
capacity of such a cut is given by the sum
(21) T Uy,
ieX 1
jeV=X

Theorem 3. Assume that (L.F.) holds. Then the

maximum amount of flow from s to t is equal to the minimum
capacity of all finite cuts separating s and t,

We conclude with the following remarks.
Remark 7. Theorem 2 is false if we allow ugy = = For

example, take V to be the set of integers, and define




di-di-o,1eV,ui’i+1-°°,uij-Oifj+i+1,
£1’1+1 =3 if i >0, Lij = 0 otherwise. Then (8) and (9)
are satisfied, but there is no feasible flow.

Remark 8. It is essential in Theorem 3 to restrict the

class of cuts to the finite ones. For example, consider
the disconnected graph composed of two disjoint uniformly
directed one-way infinite paths, with s as the front end
of one of these paths, t the tail-end of the other.
Suppose each edge of this graph has capacity 1. Then
there i8 a flow from 8 to t of amount 1, but s and t are

separated by an infinite cut of capacity zero.
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